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In this paper we discuss the continuation of a class of three-particle potential scattering amplitudes to 
complex values of the total angular momentum. The class of amplitudes considered are those which describe 
a scattering in which a given pair of the particles is bound in the initial and final states. A nonrigorous 
discussion indicates that, except for simple kinematic factors, the only singularities present in the complex 
angular momentum plane are dynamical poles and possible isolated essential singularities. The Watson-
Sommerfeld transformation of the full amplitude can be performed to display its large momentum-transfer 
behavior. 

I. INTRODUCTION 

THE behavior of two-particle potential scattering 
amplitudes at large momentum transfers has 

been successfully examined in terms of poles in the 
complex angular momentum plane. In the previous 
paper (denoted here by I) we have discussed some 
general features involved in determining the large 
momentum-transfer behavior of many-particle poten
tial scattering amplitudes by complex angular momen
tum techniques. In particular, a continuation of the 
partial-wave Schrodinger equation to complex values of 
the angular momentum was obtained. A nonrigorous 
investigation of the analytic properties of a class of 
three-particle amplitudes found from the scattering 
solutions to this equation is given in this paper. With 
an appropriate choice of boundary conditions for the 
scattering solution, we find that this continuation deter
mines the large momentum-transfer behavior of the 
full amplitude. Moreover, the singularities in the 
angular momentum plane which determine the asymp
totic behavior consist only of poles and possibly isolated 
essential singularities. The simplicity of Regge's de
scription of the asymptotic behavior of scattering 
amplitudes is thus maintained in this three-particle case. 

Since any multiparticle system has only three degrees 
of rotational freedom, all of the angular momentum 
features of the many-particle problem are already 
present in a system of three particles. We will therefore 
be concerned in the bulk of this paper with three-
particle scattering and later indicate how the generaliza
tion to nonrelativistic many-particle amplitudes can be 
made. For simplicity, we are considering spinless and 
nonidentical particles interacting by means of two-body 
Yukawa potentials. 
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FIG. 1. Position vectors for a 
three-particle system in the 
center-of-mass frame. 

*This work supported in part by the U. S. Atomic Energy 
Commission. 

+ National Science Foundation Predoctoral Fellow. 

In a three-particle scattering process, there are 
several amplitudes that can be discussed depending on 
how much of the interaction is turned off in the asymp
totic states. In the initial and final states one can have 
either three free particles or a bound pair with the 
third free. Each possible amplitude represents a dif
ferent class of scattering boundary conditions.1 To avoid 
discussing these various amplitudes at length, we will 
concentrate on the particular class of amplitudes in 
which initially and finally particles 1 and 2 are bound. 
This particular class is at once interesting from the 
point of view of real processes and simple to calculate. 

To determine the analytic properties of these ampli
tudes we will exploit the kinematical similarity that 
three-particle scattering bears to the scattering of two 
particles with spin. If initially and finally two of the 
three particles are in a definite state of their relative 
angular momentum /, then the scattering is kinemati-
cally the same as the scattering of a particle from a 
composite object with a spin I and certain other internal 
degrees of freedom. Of course, this spin is not conserved 
and there is a continuous infinity of internal degrees of 
freedom corresponding to the energy of the composite 
object. 

II. THE PARTIAL-WAVE SCHRODINGER EQUATION 

In order to study the solutions of Schrodinger's 
equation, we will introduce a specific coordinate system 
and make explicit the procedures outlined in I. We 
begin by surpressing the three degrees of freedom 
corresponding to the total center of mass. The wave 
function then depends on two position vectors which we 
may take to be r, the relative coordinate of particles 1 
and 2; and R, the coordinate of their center of mass 
relative to the third particle (see Fig. 1). These co
ordinates were denoted collectively by r in I. The 
scattering wave function also depends on the quantum 
numbers which label the incoming wave, denoted by p 
in I. These will be chosen to be P, the total momentum 
of the composite object 1 and 2 and the quantum 
numbers which characterize its internal wave function. 

1 For a summary of some of these aspects of three-particle scat
tering amplitudes, see C. Lovelace, Three-Particle Systems and 
Unstable Particles, Lectures at Edinburgh Summer School, 1963 
(to be published), and the references cited therein. 
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The latter labels will be taken to be I, the relative 
angular momentum of particles 1 and 2, their ' 'helicity" 
17=1-P/|P|, and their center-of-mass energy, p2/2m. 
Since P ( L - l ) = P (R x P) = 0, the helicity is also the 
projection of L on P. The total conserved energy is 

E= (p2/2m)+ (P2/2w0. (2.1) 

Here, if mi, m^ m% are the particle masses, we have 

mim2 {m\-\-m^)mz 
m= , w! • 

nti-\-m2 Wl+^2+% 
(2.2) 

Explicitly, the wave function is written: 

* = * [ ( / ^ ) P ; r , R ] . 

This choice of variables is clearly suitable for pursuing 
the analogy with the scattering of particles with spin. 

Now introduce polar coordinates R, 0, cp of R relative 
to some arbitrary polar axis, and r, 0, a of r defined 
with R as a polar axis. It is also convenient to introduce 
a fixed and arbitrary angle a to define the origin of a 
(see Fig. 2). 

The three angles <p, 0, \f/=a+a' are the Euler angles 
discussed in I. The corresponding body-fixed z axis lies 
along R. The potential, which depends only on the 
interparticle distances, is a function of the remaining 
coordinates R, r, /?. 

We will now write down the Schrodinger equation in 
these coordinates and make the partial-wave expansion 
of I. The full Schrodinger equation for the wave func
tion <S>(r,R) = *(r,R)/ifr, is (with ft =1) 

L2m\dr2 rV 2m\< 

d2 (L- l ) ' 

dR2 R2 
^+E-V(R,r,p)\ 

X*(r,R) = 0. (2.3) 

Here, L and 1 are regarded as differential operators in 
the angles. 

The wave function can be expanded in a complete 
set of functions for the variables r, 0, a, <p, 6 obtaining 
a set of coupled differential equations in the coordinate 
R. To do this, we make the partial-wave expansion of 
I taking P to be the space-fixed z axis. We will thus be 
expanding in eigenfunctions labeled by L, its projection 
on the space-fixed axis 77, and the projection on the 
body-fixed axis 77' 

T / = L . R / | R | (2.4) 

We also expand in the eigenfunctions of the relative 
angular momentum I and its projection on R. Since 
L« R= 1- R, the combined orthogonal eigenfunctions can 
be written 

((2£+l) /4r)U,^(M«')r ,» 'G9,a) . (2.5) 

Finally, we will expand in a complete set of solutions 
for the variables r. These will be the solutions $i{p,r) 

of the two-particle problem 

rd2 1(1+1) -i 
+P2 2mV(r) Mp,r) = 0. (2.6) 

Ldr2 r2 J 

The complete expansion then becomes 

$ [ ( ^ ) P ; r , R ] 

X Z ^ ( M < O F ^ ' ( M . (2.7) 

The sum is over the discrete and continuous spectrum 
of the two-particle problem in p ( E P denotes an inte
gral), over integral values of / with l> 177' |, and over 77' 
with 177'I <L. 

In proejcting out the equations which govern the 
<f>i'p,v'>iPvL(R)y 01^y t n e matrix elements of 1-L and 
V(R,r,f3) are not readily evaluated. In order to evaluate 
the former, it is convenient when considering rotations 
generated by L to maintain a fixed and let a' vary, 
while when considering rotations generated by 1, we 
keep a! fixed and let a vary. In terms of the spherical 
components2 of L and 1 in the body-fixed frame 

L(<p,6,a')'l(l3,a)=-L+L-LJ++Lolo. (2.8) 

The matrix elements of Eq. (2.8) are then given by 
Eq. (Al) of I recalling that 1 is an angular momentum 
like L, and Fz"(^,a) = Z),oL(/5,a:,0). 

Define 

*,= [(£-*?) &+V+1) (l-v) Q+V+1)]1/2, (2.9) 

v lpv>l'p'vf 

= 2m%i [dhh>Hp\r)Yl,*'^p)a)ZV(R,r,p)-V(r)'] 

Xh(p,r)Yiv(M/r2, (2.10) 

where V(r) is the interaction between particles 1 and 2. 
The equation becomes3: 

r d2 L ( L + 1 ) + Z ( H - 1 ) - 2 T ? / 2 - , 

U £ 2 R2 J 

— y£dl''p''rif'Vl'p'r)',l''p'>ri''(R)<l>l''p,'ri,',lpriL(R)z::=Q* 
(2.11) 

FIG. 2. Polar coordinates for the vec
tors r, R. Z is a space-fixed axis. 

2 A. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, New Jersey, 1957). 

3 The coordinate transformation can also be performed ex
plicitly; see E. Hylleraas, Z. Physik 48, 469 (1928). 



B622 J A M E S B . H A R T L E 

This can be written in a matrix form as 

i2 AL 

-+P2—r-V(R) 
-dR2 R2 

(2.12) 

The intermediate i\" sum remains restricted to | t\n \ <L. 
This equation displays the formal equivalence of the 

three-particle problem to a problem having many two-
body channels. InEq . (2.7) we can regardipi(p,r)Yiv(l3,a) 
as the internal wave function of a composite particle 
composed of particles 1 and 2 which scatters off par
ticle 3. The equation which governs such a set of two-
body channels is (2.12). 

III. THE EQUATION AND SOLUTIONS FOR 
COMPLEX ANGULAR MOMENTUM 

We continue the equations to complex L as discussed 
in I. The restriction that \r}f\ <L is removed and the 
coupled equations are considered for arbitrary integral 
values of r[. When L is an integer, a^ vanishes thus 
guaranteeing that the physical equations will decouple 
from the unphysical ones. 

In order to examine the analytic properties of the 
solutions, it is convenient to introduce a wave function 
4>L which obeys an equation all of whose coefficients are 
entire functions of L, 

where4 

Pip„i 'p^ = «»'«pp'«„'C(i-i?) KL+v) Q~1/2. (3.1) 

The potential, a function of the interparticle dis
tances, is independent of the angle a and hence its 
matrix elements are diagonal in rj [see Eq. (2.10)3- The 
equation governing $>L can then be written 

d2 

-dR2 
-P2-

AL 

R2 
-V(R) "kL(*)=o. (3.2) 

Here, AL is defined in the same way as AL with av 

replaced by 

&,= {L-ri)l(l-n){l+r)+l)-} 1/2 (3.3) 

Every element of AL, and therefore every element of 
the matrix of equations, is an entire function of L. 

We will now examine the analytic properties of the 
solutions to Eq. (3.2) for two simple classes of boundary 
conditions. From these solutions, the solution to the 
scattering problem can be constructed and the analytic 
properties of the amplitude determined. 

In the succeeding paragraphs, many questions of 
convergence will of necessity be left unanswered. We 
will treat the coupled set of equations (3.2) as though 
it were a finite matrix of equations. This can be done 
by introducing a cutoff in the intermediate p and I 
sums. The true 5 matrix will be the limit as the cutoff 

4 For complex z, we define z! = r ( z + l ) . Spp> is to be interpreted 
as d(p-p'). 

tends to infinity of the S matrices computed from these 
truncated equations. The analytic properties we derive 
are those of each term in the sequence. The potential 
which couples the equations together is independent of 
the angular momentum, so it is perhaps plausible that 
the limit has the same analytic properties as each term 
in the sequence. We are well aware that mathematically 
this may not be the case and we have been unable to 
find a rigorous proof for the statement. 

Certain intermediate steps in the proof, such as the 
convergence of the several series used to define the solu
tions, will also not be discussed in this paper. Some of 
them, however, have been proved rigorously and we 
will indicate in a later paragraph which these are. 

We first obtain solutions of Eq. (3.2) specified by 
boundary conditions at the origin. In order to examine 
their analytic properties, we employ the standard 
power-series technique5,6 and look for solutions of the 
form 

$L(R) = ti:a(n,*)R"~JiR« 
w=0 

(3.4) 

Here, a and a are matrices, and Rff is a matrix whose 
diagonal elements have the form R°z when a is diagonal 
and has eigenvalues o-g. 

Near the origin, the matrix elements of a Yukawa 
potential increase no faster than Rr\ so that 

a(0,e7)[>(o— l ) ] -AM0,<r ) = 0. (3.5) 

We will demand that c, a(0,<r), and AL be simultaneously 
diagonal. AL is the orbital angular momentum (L— 1) 
of particles 1 and 2. I t is diagonal in /. The eigenvalues 
of a given submatrix characterized by I are discussed 
in Appendix A and given by 

( Z + Q C L + B - 1 ) £ integral, | f | < / (3.6) 

including the case of complex L. 
The allowed values of <7$ are thus from Eq. (3.5) 

e r ^ Z + H - 1 , e r * " = - Z - { . (3.7) 

The transformation which diagonalizes AL is discussed 
in Appendix A and is denoted by 

UiPV, I'p't—dii'dpp' Uv%. (3.8) 

The index £ refers to the representation in which AL 

is diagonal. In this representation it is demonstrated in 
Appendix A that for small R the potential matrix 
elements have the behavior 

r „ f o , ^ c c j e i e - « ' i . (3.9) 

Recalling that aip^ifPf^(0,a)<^8^, an inspection of the 
differential equation shows that the leading terms in the 
series solution of Eq. (3.4) then have the form (j>ipbi>p't>L 

ccRm rather than ccR^\ Equation (3.4) can thus be 

e S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962). 
6 J. Charap and E. Squires, Ann. Phys. (N. Y.) 20, 145 (1962); 

R. Newton, Phys. Rev. 129, 1437 (1963). 
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written 

$L(R) = R° £) a(n,*)R». (3.10) 
«=o 

If we make the expansion 

F ( £ ) - P 2 = f; b(m)Rm, (3.11) 
ra=0 

the Schrodinger equation determines the recursion 
relation 

l(a+n+2)(<T+n+l)-AL~]a(n+2, a) 

= Jt,b(n-k)a(k,o). (3.12) 

The fact that <j>L(R) can be written in the form of 
Eq. (3.10) is useful because the complications usually 
associated with indices <7$ which differ by integers are 
absent in this case.7 Except for certain integer or half-
integer values of L, [_(<j+n)(a+n— \)—kL~}~1 is regular 
for all n. 

For the set of indices a-/, it is convenient to choose 

flip„i'p'^(0,cr,) = «ii'fiw1/2 Z s tf,«(iP*K 
Xr-*'»<*-L>-n[>6 '-$) Q-if/^-1. (3.13) 

With this choice of boundary condition the solution of 
the free Schrodinger equation will be j(R) denned in 
Appendix B. The products u^u^~"1 are meromorphic 
functions of L (see Appendix A). From Eq. (3.11) we 
can conclude that a{n^1) are also meromorphic with ad
ditional poles due to those of [(a'+n) (af+n— 1)—A1']-1. 
These poles are fixed and kinematic and do not depend 
on R. Formally, the same analytic properties hold for 
the sum, Eq. (3.9). This solution will be denoted by 
J(R). Using the power-series method this solution may 
be extended to all real values of R. 

Similar analytic properties hold for the solutions with 
indices v" for which we choose 

< * W ' P V ( * V " ) = -hvhv'Tr-1'2 £ * U^P-1 

This solution is denoted by N(R). 
The general solution of the Schrodinger equation may 

be expressed as a matrix linear combination of J(R) 
and N(R). For physical values of L, J(R) is the solu
tion regular near R=0. We will, therefore, require that 
the scattering solution be a matrix multiple of J(R) as 
a boundary condition for complex L. J(R) contains 
irregular solutions for general complex L. 

The scattering solution consists of the free solution 
plus a scattered part which contains only outgoing or 
decaying waves. As a second class of boundary condi
tions, we will consider elementary solutions of this type. 

7 Compare E. A. Coddington and N. Levinson, Theory of 
Ordinary Differential Equations (McGraw-Hill Book Company, 
Inc., New York, 1955), Chap. 4. 

Solutions having outgoing waves in the open channels 
(p2/2m<E) and decaying waves in the closed ones 
(p2/2m>E) are generated by the free Green's function: 

G*(RJl')=j(RJhV(R>). (3.15) 

Here, j(R) is the free solution regular at the origin for 
physical L, and ha)(R) is a free solution corresponding 
to pure outgoing waves in the open channels or decaying 
waves in the closed channels. For the closed channels in 
which the energy of the composite object is greater than 
that of the total system, P is defined with positive 
imaginary part. These solutions are given explicitly in 
Appendix B. There it is shown that both j(R) and 
ha)(R) are entire functions of L so that the Green's 
function is also. 

The free solution corresponding to ha)(R) but de
fined with incoming or expanding waves is denoted by 
h(2)(R) and discussed in Appendix B. We introduce the 
free solution h(z)(R) defined by 

*IP„I 'P ' , ' C 8 ) (* ) = « P P ' * ^ , I ' P ' , ' ( 8 ) ( * ) P2/2m<E 
= 0 p2/2m>E. (3.16) 

h(s)(R) is an entire function of L containing only in
coming and no expanding waves. Solutions of the com
plete Schrodinger equation (3.2) are then defined by 

/•OO 

ffG.8>(£)==A<iia)(20+ / dR'jiR^h^iR^ 

XV(R,)H(-1^(R/) R>R0>0. (3.17) 

The Fredholm method8 may be used to construct 
solutions to these equations. One obtains 

A^(R) 
W1'»(R) = h<1>»(R)+ . (3.18) 

D(E,L) 

Here, A(1«3)(i?) is a matrix and D(E,L) a function both 
expressed as Fredholm series on the kernel of Eq. 
(3.17). For our present purpose, it suffices to recall the 
form of these series. The nth. term in the series for 
D(E,L) consists of an integral over a determinant of 
an nXn matrix whose entries are the kernel of Eq. 
(3.17). A similar statement holds for A(1'Z)(R) except 
that there is an additional integration over h^'3)(R). 
Since the kernel is an entire function of L, and k&*3)(R) 
is also, both wth order terms are entire functions of L. 
With the qualifications on rigor mentioned above, we 
can then conclude that both D(E,L) and every element 
of A(1'3)(i?) are entire functions of L. The solutions 
#(i,3) a r e ^ u s analytic in the complex angular mo
mentum plane except at dynamical poles arising from 
the zeros of D(E,L). 

The Green's function, Eq. (3.15), is a diagonal matrix 
in the indices I and p. A given diagonal element 
Gipruip'n^iRyR') will be irregular for small values of 

8 A. C. Zaanen, Linear Analysis (P. Noordhoff, Gronigen, 1953). 
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R< if ReL<l— 1 as can be seen from the explicit ex
pression for j(R) in Appendix B. Since arbitrarily large 
values of / are coupled by Eq. (3.17), there is no value 
of L for which every element of the kernel of Eq. (3.17) 
is regular for small R<. The Fredholm method thus 
cannot be straightforwardly applied unless R0 is greater 
than zero. 

Every solution of Schrodinger's equation cannot be 
expressed as a matrix linear combination of the two 
solutions Ha'B)(R) since in Eq. (3.16) we have omitted 
the expanding waves. The scattering solution, however, 
contains no expanding waves and can be expressed as a 
linear combination of these solutions for R>RQ. 

IV. THE SCATTERING AMPLITUDE 

The asymptotic states which contain particles 1 and 
2 bound and particle 3 free can be characterized by the 
quantum numbers P(lpr)). The scattering amplitude 
will therefore be denoted by {{VpWW\T\ P(lpn)), and 
is a function of the angles c o s 0 = P - P / / | P | | P ' | and <p 
an azimuthal angle of P ' about P. Since there are only 
two vectors which characterize the amplitude, the 
angle \p of the partial-wave expansion discussed in I is 
superfluous and may be chosen as — <p. The partial-
wave expansion is then9 

<(W)Fjr|P(^)> 
= (47T)"1 ZL(2L+l)T^pfvfylpv

L(E) 
XDvv,

L(<p,6,-<p). (4.1) 

The sum ranges are integral values of Z > m a x ( | r\ (, (r[ | ) . 
At large R, the scattering3 solution is a sum of two 

parts. First, there is the product of incoming plane wave 
and a bound-state wave function characterized by 
rj = 1 • P/1 P |. The second part consists of outgoing spheri
cal waves times states of definite Vp' and rf= !• R/1 R | . 

* [ ( / ^ ) P ; r ,R] -> e^far) E , ' # , / ( « > , 0, ~ <P) 

Xfi>W,r)Yv*Q3,p), (4.2) 
where 

F R P 2 p2 

= E== + _ . (4.3) 
| F | | R | 2m' 2m 

The rotation matrices in the incoming part result from 
expressing states of definite 1 - P / | P | as superpositions 
of states of definite 1«R/ |R | . Asymptotically, final 
states of definite 1-R/ |R| become states of definite 
helicity 1*P ' / |P ' | . The sum over final states is taken 
over all accessible 4/ir(p\r) including those in the con
tinuum. In the case where p and pr correspond to 
bound states, we may take this expression to define the 
scattering amplitude 

<(W)F|:r|P(^)> 
= ( 1 / 2 T ) ( ^ P W I ^ , M P , ( F , P ) . (4.4) 

9 Compare M, Jacob and G. Wick, Ann. Phys. (N. Y.) 7, 404 
(1959). 

These expressions resemble those of the scattering of 
particles with spin where the ylsi(p,r)Yi*(J$,a) play the 
part of internal wave functions.10 

The asymptotic behavior of $L{R) may be projected 
out of Eq. (4.2). This involves replacing the plane wave 
by its familiar Rayleigh expansion evaluated at large 
R and performing some Clebsch-Gordan sums arising 
from the angular integration. Apart from a constant, 
one has 

-e~^L^e^R{Pf)-^SVv^f,lp,
L{E), (4.5) 

where we have introduced the S matrix 

S=I+iT. (4.6) 

Equation (4.5) is taken as the definition of the partial-
wave amplitude for complex L. 

The amplitude thus defined can be found by con
structing the scattering solution from the elementary 
solutions discussed earlier. To do this we use a method 
which differs slightly from that employed by Regge 
and others for the case of two-body channels.6 That 
approach would involve the knowledge of solutions 
which behave like expanding waves in the closed chan
nels and these we have not computed. 

The scattering solution Eq. (4.5) has a unit amount 
of incoming wave. Noting the asymptotic properties of 
Hm(R) implicit in Eq. (B4), it can be written as a 
superposition of Ha)(R) and H(S)(R) in the form 

$L{R) = H^ (R)+H<u (R)X(E,L). (4.7) 

The matrix X is to be determined by the boundary 
condition at the origin. Since J(R) and N(R) are also 
a complete set of solutions to the Schrodinger equation, 
we may express Ha>z)(R) in terms of them. 

HW(R) = J(R)AW+N(R)B«>v. (4.8) 

In order to determine the constants, we may introduce 
an analog of the Wronskian in a many-channel problem. 
If % and \p are solutions of the Schrodinger equation, 
Eq. (3.2), then 

# dx
T 

W£X,+1 = XTP2 P ¥ (4.9) 
dR dR 

is independent of R. This is a simple consequence of 
the symmetry of the potential and AL. The boundary 
conditions on the function J(R), N(R) imply 

WZJJI=WEN,NI=O. { ; 

In the region where the series for / and N converge, 
we may evaluate 

i° R. Newton, J. Math. Phys. 1, 319 (1960). 
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The scattering solution can then be written 

+N(R)tBMX+B<to]. (4.12) 

The boundary condition at the origin is that the scatter
ing solution be a multiple of J(R). This condition deter
mines the matrix X. 

X=-[Sd>]--i£(8>. (4.13) 

The 5 matrix may be expressed in terms of X by 
taking the asymptotic limit of Eq. (4.7) and comparing 
with Eq. (4.5). This can be done by consulting Ap
pendix B and defining 

Z«>v= I dRj(R)V(R)H*'»(R). (4.14) 
JRQ 

Putting S=pSp~1, we have for S 

S=lI+Z^2X+Z^K (4.15) 

This formula holds only for those elements Sipr,,vprnf 

such that p and p' correspond to open channels. 
The analytic properties of S can now be read off 

Eq. (4.15) knowing those of X and Z<1-8>. From the 
properties of j and H^l>z) discussed in the previous sec
tion, we have that Z(1,3) are meromorphic functions of 
L with only the dynamical poles of Ha<z) as singularities. 

From Eqs. (3.17), (3.13), (3.12), it can be seen that 
the solutions J(R) and Ha)(R) have the form 

J(R) =j (R)+ (terms depending on potential), 

HV(R) = hV(R)+(terms depending 
on potential). (4.16) 

The free solutions are diagonal in p while the remaining 
matrix elements have a smooth dependence on p and pf. 
From Eq. (4.11), B™ has the form 

B<n=I+M, (4.17) 

where the matrix M has a smooth dependence on p and 
p\ In this form, the Fredholm theory can be applied 
to invert £(1). 

The matrices Ba) and J3(3) will have the isolated 
kinematic singularities at integer and half-integer values 
of L possessed by the solution / . We will assume that 
these kinematic singularities do not determine the 
asymptotic behavior of the amplitude and cancel in 
the formation of X. 

The dynamical singularities of X come from three 
sources. First, there are the poles of Z2(3). Second, there 
are the poles from the zeros of detB(1) where the inverse 
of Z?(1) does not exist. Since Ha)(R) has poles from the 
zeros of D(E,L) which occur at the same position in 
every matrix element, the matrix M will have them also. 
In constructing the Fredholm series for the inverse of 
Ba) the matrix M will be iterated an arbitrarily large 
number of times. One could therefore have the possi

bility that [5 ( 1 ) ] - 1 , and hence X will possess isolated 
essential singularities at these points although a de
tailed study of the convergence of these series would 
be necessary to rigorously establish their existence. 
However, the position of these singularities depends on 
Ro which is arbitrary. The poles of Ha)(R) can be ex
cluded from any given bounded region of the L plane 
by taking RQ sufficiently large, since the norm of the 
kernel in Eq. (3.17) can thus be made less than 1. 
Singularities which move with Ro cannot determine the 
asymptotic behavior of the amplitude so that for some 
large value of Ro the poles of Ha) (R) can all be assumed 
to be in the left-half plane. Indeed, one can show that 
the kernel of Eq. (3.17) is bounded in the right-half 
plane so that for the truncated problem this is true. In 
the following we will assume such a value of Ro has 
been taken. 

The important point is that all these singularities of 
X are isolated. Since they are all dynamical, we will 
presume that they are all confined in a region ReL <L0 

for some L0. Combining the information about Z(1-3) 

and X, we may summarize the properties of S by saying 
that it possesses only dynamical, isolated singularities. 

We emphasize that the above discussion does not 
exhaust the attention which must be given to the ana
lytic properties of these amplitudes. An important 
point, for instance, is to show that the kinematic 
singularities of / cancel when X is formed. This is the 
case for the analogous singularities for some problems 
involving two particles with spin.6 When an infinite 
number of / values are coupled, there is the possibility 
that these are essential singularities which do not 
straightforwardly cancel. 

Some progress can be made towards justifying the 
above, method of proof without the artifice of trunca
tion. Instead of trying to examine the limits as the 
cutoffs tend to infinity, it is more fruitful to deal 
directly with a partial differential equation. We 
introduce 

X*vWS)Yv*(Pp). (4.18) 

rVr
2 1 /d2 AL\ i 

L2m 2m\dR? RV J 

X&p,(*,r) = 0. (4.19) 

Here, AL is the differential operator given by 

A L =L(L+l)+l 2 -2 /o 2 -2 / + (L+/o) -2L(L- / 0 ) , (4.20) 

where the 1 are to be interpreted as the usual differential 
operators in /3 and a. This equation is not the same as 
the partial-wave Schrodinger equation. Indeed, that 
equation was an infinite set of coupled equations in T? 
while this is a single equation. 

The integral equation (3.17) and the power series (3.4) 
can be transcribed into this representation. Making 
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ImL 

max (1̂ 1,1 

-m 
V»7 J 

ReL 
-max CM') 

FIG. 3. Contours for making the Watson-
Sommerfeld transformation. 

some simple assumptions on the analytic properties of 
the free Green's functions, we have been able to discuss 
rigorously the convergence of the Fredholm series for 
the solutions Ha>z)(R) and of the power series for J(R) 
in a region which deletes its kinematic singularities. 
The chief remaining problem is the construction of the 
matrix X which we have been unable to do rigorously. 
Specifically, it remains to show a boundedness condition 
on the matrix M to establish the convergence of the 
Fredholm series and to justify the cancellation of the 
kinematic singularities from J(R). 

Using the analytic properties of the amplitude out
lined above, the partial-wave expansion can be written 
as an integral over the contour C (see Fig. 3) 

<(W)F|r|P(/^)> 
1 f dL(2L+l) ^ 

-£L^L (7r+<p,7r-0 , <p) 
SiriJ c c sinxZ, 

where 
Xtv**.ip*L(E), (4-21) 

n , L=n ,D > Ln~1 (4.22) 

The DVV'L are entire functions of L as can be seen from I. 
The integrand of Eq. (4.21) is therefore a meromorphic 
function of L in the right-half plane. 

In order to deform the contour and display the Regge 
pole terms explicitly, the asymptotic behavior of the 
amplitude for large \L\ must be established. We will 
assume that this can be estimated from the Born ap
proximation which is appropriate here since for large 
| L | the potential can be neglected in comparison with 
the centrifugal barrier. 

For sufficiently large ReL, the Born approximation is 
given by 

The integral converges for ReZ> (/+/ '—1)/2, 

<(W)in(^)> 
= i k £$!'77i»72 Un>? I dRRJi+v+i(PR) 

Jo 

XUVnVl.,n.iPnlInc
lJi+MWUtC1- (4-25) 

Now if Iprj and Vjft) are quantum numbers of bound 
states, the corresponding wave functions $i(p,r) and 
i*v (p\r) decrease exponentially for large r. If we assume 
interparticle Yukawa potentials, a typical integral in
volved in computing Vv^^ip^iR) is (for equal mass 
particles) 

exp{-[*ZF*+lr*-Br cos/?]1'2} 

/ [R2+lr2-RrcospJl* 

Xhip^Yi^cd/rK (4.26) 

The integrand decreases exponentially with R for all 
values of r and cos/5 and it is therefore reasonable to 
assume the integral does likewise. Since it is also a 
continuous function of R, and has a singularity no 
worse than R~x at the origin, it is plausible that it is a 
superposition of Yukawa potentials. 

RVlpnfVpW(R)= mi>p>v>tiPV(v,)e-»Rdn. (4.27) 

Indeed, all these statements can be justified in detail 
but we will not reproduce them here. 

Knowing (4.27), we can immediately take over the 
results of Charap and Squires11 for contour integrals 
such as Eq. (4.20). The contour C can be deformed into 
a curve V (see Fig. 3) for all Re0>O with the integral 
along the large semicircle vanishing. The resulting 
expansion is 

<(W)P'|:r|P(%)> 

XL 

8 W i 

simran(E) 

dL(2L+l) A 

,"»(*+<p,ir-e, <p) 

sinwL 
Tvp'r,',lpV

L(E) 

XD-V,V
L(T+<P,T-0,<P). (4.28) 

The BirP'v>tiPVy are simply related to the residues of 
the poles of TI>P>V>,IPVL- The asymptotic behavior in 
cos0 can now be read off the above expression. With a 
more stringent estimate on the asymptotic behavior of 
the amplitude at large L, the contour could be moved 
further to the left. If the assumptions regarding the 
cancellation of the kinematic singularities of / and the 
position of the poles of H(1) were not satisfied, the 
asymptotic behavior could not be determined by this 
method. 

The generalization of the preceding discussion to the 
scattering of a single particle from a bound state of N 

= W i ' i L* Ut^TrRyvjL+^APRW^-K (4.24) n J. Charap and E. Squires, Ann. Phys. (N. Y.) 21, 8 (1963). 

XB-
••-f dRil>0T(R)V(R)<t>0(R)> (4.23) 

where <£° is the solution-free Schrodinger equation 
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particles is straightforward. Such an analysis is useful 
in a discussion of the scattering from nuclei. Again, a 
formal reduction of the multiparticle equation can be 
made to a set of coupled two-particle equations except 
that the number of internal variables specifying the 
composite object is now much larger. The same analytic 
properties can be derived. 

The extension to the scattering of particles with spin 
can also be made. The behavior of the system under 
rotation is now more complex but the above analysis 
should differ in no essential way. Wick12 has shown how 
to make the partial-wave expansion appropriate to 
this case. 

V. DISCUSSION 

The partial-wave Schrodinger equation continued to 
complex L obtained in I does not uniquely specify the 
scattering solutions until appropriate boundary condi
tions are imposed. For the physical scattering problem 
at an integer value of L, there is only one way to do 
this. For complex Z,, however, there are many choices 
of boundary condition which reduce to the physical 
boundary conditions at integer values of L. Each choice 
of the boundary conditions will result in a different 
continuation of the amplitude to complex values of L. 
We can illustrate the situation with an example. 

The three-particle kinetic energy expressed in terms 
of r, R, I, and A, the orbital angular momentum of the 
center of mass of particles 1 and 2, can be written in 
its diagonal form: 

1 /d2 2d l(l+l)\ 
?IKL= ( — + ) 

2m\dr2 r dr r2 / 

H1 d2 2 d A (A+1) \ 
- + ) . (5.1) 

2tn'\dR2 RdR R2 / 

For small values of r and R, we must impose the follow
ing boundary condition on the wave function in order 
that the solutions be regular 

tiAL-^RAF(r), R->0 

*iKL-*rlG(R), r - » 0 . 
(5.2) 

Recalling that 1 + A = L, this can be written, with L 
still an integer as 

or 

xPiAL(rR)->RL+ZF(r) 

^L{r,R)->rlG{R) 

tuL(r,R)-*RW(r) 

fixL(r,R)^rL+!G(R). 

| £ | < m a x ( Z , 0 (5.3) 

| f |<max(L,A) (5.4) 

Still at integer values of Z, we introduce the unphysical 
wave functions corresponding to L<\%\<1 or £ < | f | 
<A. Two ways of specifying the boundary conditions 
on these functions which will be smooth in L when it 

becomes complex are to require either Eq. (5.3) or 
(5.4). These alternative boundary conditions will lead 
to solutions of a fundamentally different character for 
complex L since one choice specifies some solutions 
irregular at small R and regular for small r, while the 
other does the opposite. In comparing these particular 
alternatives t we may put the matter another way by 
saying that when we continue to complex L we can 
make either of the internal angular momenta, A or /, 
complex at the same time. 

In I it was shown that there could be only one con
tinuation of the amplitude to complex values of the 
angular momentum which determined the asymptotic 
behavior of the full amplitude through a Watson-
Sommerfeld transformation. There thus must be a 
unique choice of boundary condition for the scattering 
solution of the Schrodinger equation at complex L 
which yields this continuation. 

' The boundary condition of Eq. (5.3) is the one used 
in this paper. This prejudice is already evident in Eq. 
(2.7). Recently, Newton13 and Drummond14 have given 
another continuation of the three-particle scattering 
amplitude which initially and finally two of the par
ticles are bound. Along with the total angular mo
mentum, Newton continues an orbital angular momen
tum associated with an interparticle distance. This 
corresponds to the boundary condition of Eq. (5.4). 
The resulting amplitude has cuts in the L plane ex
tending infinitely far to the right. These cuts correspond 
to the positions of the poles in the two-body amplitudes 
of particles 1 and 2 but smeared out because their 
two-particle energy is not conserved. The discussion of 
this paper could be repeated for the boundary condition 
of Eq. (5.4) by interchanging the roles of r and R, 
I and A, and p and P. In Eq. (2.7), \//i(p,r) would be 
replaced by the free solution (PRyi2JA+lf2(PR). £ ( 1 ) 

would have a term proportional to dp>p arising from the 
scattering of particles 1 and 2 in which 3 does not par
ticipate. As Newton shows, the P-dependent zeros of 
this term give rise to cuts in [^ ( 1 ) ] - 1 . I t should be noted 
that this mechanism will produce cuts even if the equa
tions are truncated in the way mentioned above. 

The amplitude derived from the boundary condition 
of Eq. (5.4) does not determine the asymptotic behavior 
of the full amplitude in any scattering angle since there 
is no right-hand-most singularity. Indeed, if the dis
cussion of this paper can be fully justified, the con
tinuation presented here is the unique one from which 
the asymptotic behavior can be found for the class of 
amplitudes discussed.15 This continuation maintains the 
simplicity of the Regge prescription for the large 

12 G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962). 

13 R. Newton, Nuovo Cimento 29, 400 (1963); Phys. Letters 4, 
11 (1963). 

1 4 1 . Drummond (to be published). 
15 The scattering solution for another type of process, for ex

ample, the scattering of three free particles into three free particles, 
could require a different boundary condition to yield a proper 
continuation. 
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momentum-transfer behavior in that it has only isolated 
singularities. 

Mandelstam16 has demonstrated that there are cuts 
in the relativistic two-particle amplitudes due to the 
coupling with three and higher particle intermediate 
states. This conclusion follows from a study of the 
restrictions imposed by unitarity on a particular class 
of relativistic diagrams. His results are not in conflict 
with those presented here since the diagrams he con
siders are not present in the nonrelativistic problem. 
They are a type of diagram which arise from the possi
bility of creating virtual pairs of particles. The simple 
inelasticisity of a three-particle potential scattering 
does not seem sufficient to complicate the large mo
mentum-transfer behavior characteristic of poles in the 
angular momentum plane. 
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APPENDIX A: DIAGONALIZATION OF A* 

Define 
: = 5zz'5i3 ,Ll (Al) 

AL>1 is a ( 2 / + l ) X (2/+1) matrix representing the orbital 
angular momentum of the center of mass of particles 1 
and 2. As such, it has eigenvalues ( Z + £ ) ( £ + £ + 1 ) with 
— / < £ < H o r integral values of L such that L>L 

Consider the function 

d e t [ ( L + £ ) ( L + H - l ) / - A ^ ] . (A2) 

I t is clearly an entire function of L with a polynomial 
behavior at large \L\. Since it vanishes on the integers 
L>1, Carlson's theorem17 requires that it vanish identi
cally. The eigenvalues of AL for complex L are, therefore, 
also given by ( L + £ ) ( Z + £ + l ) with - / < £ < / . 

When L is an integer greater than /, the elements of 

the unitary transformation U^ which diagonalizes AL>1 

are easily computed. Denote by X an eigenvalue of AL>1 

(LMlrj\\lLM) 

= E (LMk I \mllm2)(\mllm2 \ \ILM). (A3) 

Now 
/2L+1\W r r 

(LMlr) I lm{\m2) = I ) / <K2̂  / d£lpa 

X 2 ? M ^ ( ^ ^ F ^ O S ^ F z ^ O S i ^ O F x - 1 ^ , ^ ) , (A4) 

where 
F ^ ( f o O = E * / W ( 0 & p ) F , ' ' ( f o * ) 

via a rotation of coordinates. Performing the integra
tion, one finds in terms of Clebsch-Gordan coefficients 

(LMlrj I \tnjtn2) 
/ 2 A + 1 \ 1 / 2 

= ( - 1 ) I H - W C0dL;Onn) 
\2L+1/ 

XC(X/L;w!W2M). (A5) 

The sum in Eq. (A4) may be explicitly performed and 
an arbitrary phase chosen to give 

/ 2 X + 1 \ 1 / 2 

(LMk\XlLM)=(-m C(X/Z,;0w); (A6) 
\2L+1/ 

writing A=Z,+£, we have for integral L 

tf,*=(-lH C ( L + U L ; 0 w ) . (A7) 
L 2L+1 J 

The presence of Clebsch-Gordan coefficients has an 
obvious significance in terms of the addition (L—1) 
+ 1 = L and the relation L- R = I- R. The transformation 
which diagonalizes ALtl is then U^p^U^. When L 
is complex or real and less than /, AL>1 can no longer be 
diagonalized by a unitary transformation. Since AL>1 is 
symmetric, this can, however, be effected with a com
plex orthogonal transformation 

UUT=1, (A8) 

or, equivalently, if U(L) is real for real L 

W(L)U(L) = 1, (A9) 
where 

W(L) = [U(L*)J. 

Let us examine the following continuation of U ̂  to 
complex Z, obtained by replacing the factorials in 
Wigner's expression11 by Y functions. 

U .,=[ ( 2 L + 2 f + l ) ( 2 L + f - / ) 1 (7 -0 !(H-£) l(L+v) l(L-v) J- ,1/2 

( 2 L + H - 7 + 1 ) !(*+!,) KZ-u) I 

X-
1 (-) v+l (L+l-v)\(L+^+v)\ 

'(£+?)!' vl (l-i-y)l(L+f,-v)l(L+i-l-i,+ v)l 
(A10) 

16 S. Mandelstam, Nuovo Cimento 30, 1148 (1963). 
17 R. Boas, Entire Functions (Academic Press Inc., New York, 1954), p. 153. 
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Using this, form the product 

(AH) 

For ReL>/, this expression is analytic in L. Since Z7„$ 
as defined by (A10) is bounded11 for large |L | , it is 
easily checked that (All) has at most a polynomial 
behavior for \L\—><*>. An application of Carlson's 
theorem again implies both (A9) for this choice of 
continuation and 

L s Urt{L+${L+Z+\)tj^=l^, (A12) 

which shows U diagonalizes A1 for complex L also. In 
the sense that it diagonalizes AL for complex L, (A10) 
is the unique continuation of the Clebsch-Gordan 
coefficients. 

We can now determine the small R behavior of the 
potential matrix elements given by Eq. (2.10) in the 
representation in which AL is diagonal. In order to 
compute the matrix elements, we first expand the inter-
particle Yukawa potentials in Legendre polynomials18 

(taking the particle masses equal for simplicity) 

exp{ -ij,[_R2+lr2-Rr cos/?]1'2} ^ 

ZR2+ir2-RrcospJl2 

where 

*=o \ 2/ 
(A13) 

*>n (#,#') = Mr(w+i) {xxr)~112 

X / w + | ( ^ < ) ^ n + ^ ( 1 ) ( ^ > ) . (A14) 

The angular integration in Eq. (2.10) may be per
formed explicitly to yield as a typical term 

VVP'IMPIOR) = 2f»'5^ En C(lnV; rjO^C^nl; 000) 

xj dr*lf*{p\r)vn(R^Ups). (MS) 

Since \(/i(p,r)ccrl+1 for small r and n<l+l' in Eq. 
(A15), the integral in Eq. (A15) for small R is propor
tional to Rn. 

To transform ViPV,i>p>V'(R) to the representation 
where AL is diagonal, we must evaluate 

E, U^inCiM'^OnW^il). (A16) 

For integer values of L greater than max (//) this can 
be evaluated using Eq. (A7) and Eq. (6.2.1) of Ref. 2. 

VVvrrtirtiR)« En C(L+£, n, L+?, 000)C(/'w/; 000) 

X< 
/' / 

j dnplf*(p\r)vnU^Hp,r), 

(A17) 

where the expression in brackets is a 6-j symbol. 
Equation (A 17) vanishes identically if n< | £—£' |. Now, 
Eq. (A 16) is analytic for ReL> max (/,/') and is bounded 
at large \L\. An application of Carlson's theorem 
guarantees that it will also vanish identically if n 
< I £-"•£'I- Thus, from (A17) we obtain the behavior 
of the potential for small R 

^p^MP€(U)oci2lWl. (A18) 

APPENDIX B: ANALYTIC PROPERTIES OF 
THE FREE SOLUTIONS 

We may introduce solutions to the free Schrodinger 
equation, Eq. (3.2), by 

Ai*, . i 'p ' , ' ( 1 '2 )(*) 

XHL+MW(PR)U^-\ 
jlpi\,Vv'ri'(R) 

= du,5pp, E s t)rt&rPRyi*<r**M*-L>'* 

XJL+^{PR<)UW-1: 

where JL+M, #L+£+A(1,2) are Bessel functions.18 

The matrix 5 is defined with elements 

= 8ii>dpP'd^rjn'. 

(Bl) 

(B2) 

The last line follows from the symmetry properties of 
the Clebsch-Gordan coefficients at integral values of L 
and an application of Carlson's theorem.17 If I denotes 
the diagonal matrix with elements 18 w, then 

j(R) = (l/2i)P[*a) (R)+h™ (R)28e^L+l+^. (B3) 

For ImP<0, &(2)(i£) satisfies the integral equation 

h^{R) = p-v2e-iPn 

sinP(R-R') AL r s 
+ / dRf-

J B R'2 *<«(*'). (B4) 

Equation (B4) can be iterated and converges uni
formly19 for all finite values of L and for R>0. Since AL 

is an entire function of L, it follows that h^2){K) is also. 
ha)(R) obeys the same integral equation but with an 
inhomogeneous term, e

iPRP-ll2Ie~i'It^L+l+l), where / is 
the unit matrix. A similar statement can, therefore, be 
made about the analyticity of ha)(R) but with the re
striction ImP>0. By Eq. (B3), j(R) is then an entire 
function of R if ImP=0. The coefficient of each term 
in a power-series expansion of j(R) must, therefore, 
also be an entire function of L when ImP=0. However, 
this series converges absolutely [compare Eq. (Bl) and 
the known expansion of the Bessel function] and j(R) 
is thus an entire function of L for all values of P. 

18 A. Erdelyi et al., Higher Transcendental Functions (McGraw-
Hill Book Company, Inc., New York, 1953), Chap. VII. 

19 Compare the treatment of L. Favella and M. Reineri, Nuovo 
Cimento 23, 616 (1962). 


